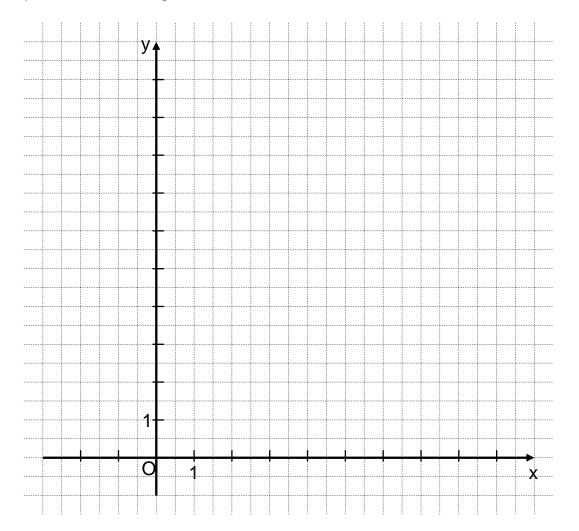
Prüfungsdauer: 150 Minuten

Abschlussprüfung 2011 an den Realschulen in Bayern


Mathematik I

Name:	Vorname:					
Klasse	e: Platzziffer: _		Punkte:			
A	ufgabe A 1		Haupttermin			
A 1.0	Daphne plant eine Teilnahme bei "J mehrere Untersuchungen zur Verme führt. Bei ihrem aktuellen Versuch saus, dass sich die Anzahl der Wasse vergrößern wird.	ehrung von Wasserflöh startet sie mit 120 Was	en in Aquarien durchge- serflöhen. Sie geht davon			
A 1.1	Der Zusammenhang zwischen der Aund der Anzahl y der Wasserflöhe l	ässt sich näherungswei	se durch eine Exponenti-			
	alfunktion der Form $y = y_0 \cdot k^x$ beso		· ·			
	Geben Sie die Funktionsgleichung a	n.	1 P			
A 1.2	Bestimmen Sie durch Rechnung di Ende des dritten Versuchstages.	e voraussichtliche Anz	zahl der Wasserflöhe am 1 P			
A 1.3	Berechnen Sie, am wievielten Versu	ichstag die Anzahl der	Wasserflöhe voraussicht-			
	lich erstmals größer als 500 sein wir	_	1 P			
A 1.4	Am Ende der ersten Woche seit d 838 Wasserflöhe. War Daphnes Annahme, dass sich d	•				
	größern wird, zutreffend? Begründe		2 P			

2 P

2 P

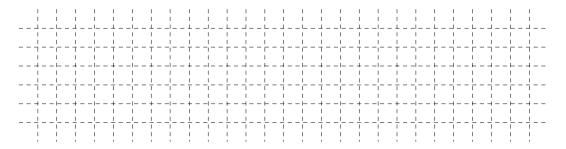
A 2.0 Die Pfeile $\overrightarrow{OP_n}(\phi) = \begin{pmatrix} 4 + 4 \cdot \sin \phi \\ 8 \cdot \cos^2 \phi \end{pmatrix}$ und $\overrightarrow{OR} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}$ mit $O(0 \mid 0)$ spannen für $\phi \in [0^\circ; 90^\circ]$ Parallelogramme OP_nQ_nR auf.

A 2.1 Berechnen Sie die Koordinaten des Pfeils $\overrightarrow{OP_1}$ für ϕ = 30° und des Pfeils $\overrightarrow{OP_2}$ für ϕ = 90°.

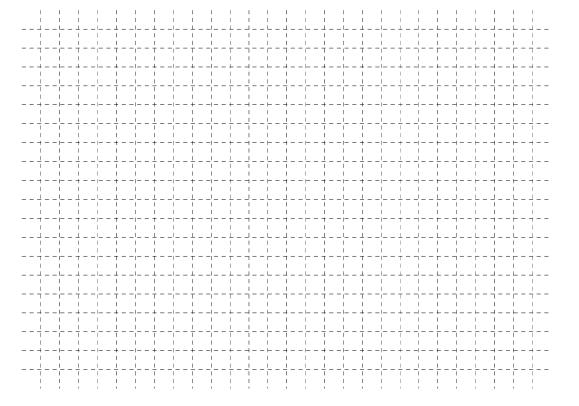
Zeichnen Sie sodann die Parallelogramme OP_1Q_1R und OP_2Q_2R in das Koordinatensystem zu 2.0 ein.

A 2.2 Der Pfeil $\overrightarrow{OP_3}$ hat die x-Koordinate 5.

Berechnen Sie das zugehörige Winkelmaß $\phi\,.$ Runden Sie auf zwei Stellen nach dem Komma.



A 2.3 Bestimmen Sie rechnerisch die Koordinaten der Punkte Q_n in Abhängigkeit von $\,\phi$.


[Ergebnis: $Q_n(3+4\cdot\sin\phi|4+8\cdot\cos^2\phi)$]

1 P

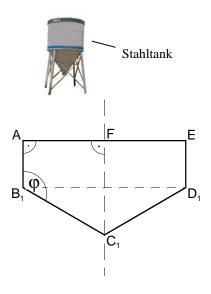
A 2.4 Zeigen Sie rechnerisch, dass die Parabel p mit der Gleichung $y = -\frac{1}{2} \cdot (x-3)^2 + 12$ (G = $\mathbb{R} \times \mathbb{R}$) der Trägergraph der Punkte Q_n ist.

3 P

A 2.5 Begründen Sie, dass der Trägergraph der Punkte P_n ebenfalls eine Parabel ist.

1 P

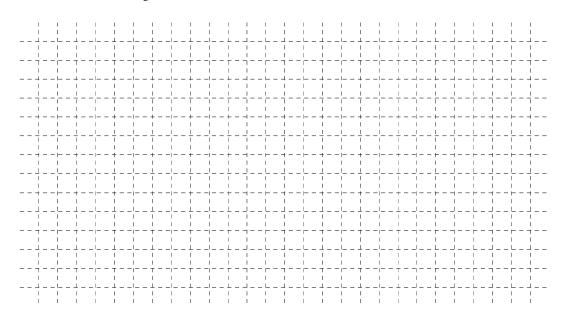
A 3.0 Eine Firma stellt Stahltanks her. Als Axialschnitte ergeben sich achsensymmetrische Fünfecke AB_nC_nD_nE. Die Eckpunkte C_n und der Mittelpunkt F der Seite [AE] liegen auf der Symmetrieachse.


Es gilt:

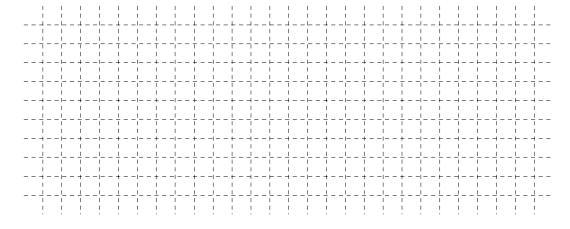
$$\overline{AE} = 2,00 \text{ m}; \overline{FC_n} = 2 \cdot \overline{AB_n};$$

$$\angle B_n AE = 90^\circ$$
; $\angle AFC_n = 90^\circ$.

Die Winkel C_nB_nA haben das Maß φ mit $\varphi \in [104,04^\circ;160,02^\circ]$.


Die nebenstehende Skizze zeigt das Fünfeck $AB_1C_1D_1E$ für ϕ = 120°.

A 3.1 Berechnen Sie das Volumen V der Stahltanks in Abhängigkeit von ϕ .


[Ergebnis:
$$V(\varphi) = \frac{4}{3} \cdot \pi \cdot \tan(\varphi - 90^\circ) \text{ m}^3$$
]

3 P

A 3.2 Der am häufigsten verkaufte Stahltank hat ein Volumen von 5000 Litern. Ermitteln Sie durch Rechnung das zugehörige Winkelmaß ϕ . Runden Sie auf zwei Stellen nach dem Komma.

2 P

Prüfungsdauer: 150 Minuten

Abschlussprüfung 2011

an den Realschulen in Bayern

Mathematik I

Aufgabe B 1

Haupttermin

B 1.0 Die Raute ABCD mit den Diagonalen [AC] und [BD] ist die Grundfläche eines geraden Prismas ABCDEFGH. Der Punkt E liegt senkrecht über dem Punkt A. Der Schnittpunkt der beiden Diagonalen der Raute ABCD ist der Punkt T. Der Schnittpunkt der Diagonalen [EG] und [FH] der Raute EFGH ist der Punkt M.

Es gilt: $\overline{AC} = 10 \text{ cm}$; $\overline{BD} = 6 \text{ cm}$; $\overline{AE} = 7 \text{ cm}$.

Runden Sie im Folgenden auf zwei Stellen nach dem Komma.

B 1.1 Zeichnen Sie das Schrägbild des Prismas ABCDEFGH, wobei die Strecke [AC] auf der Schrägbildachse und der Punkt A links vom Punkt C liegen soll.

Für die Zeichnung gilt: $q = \frac{1}{2}$; $\omega = 45^{\circ}$.

Berechnen Sie sodann das Maß des Winkels CAM.

[Ergebnis: $\angle CAM = 54,46^{\circ}$]

3 P

B 1.2 Punkte P_n liegen auf der Strecke [AM]. Die Winkel P_n CA haben das Maß ϕ mit $\phi \in]0^\circ; 54,46^\circ]$. Die Punkte P_n sind zusammen mit den Punkten B und D die Eckpunkte von gleichschenkligen Dreiecken BDP $_n$ mit der gemeinsamen Basis [BD]. Die Winkel BP $_n$ D haben das Maß ϵ .

Zeichnen Sie das Dreieck BDP $_1$ für $\phi = 30^\circ$ in das Schrägbild zu 1.1 ein.

Für alle Dreiecke BDP_n gilt: $\varepsilon \in [46, 40^{\circ}; 72, 79^{\circ}]$.

Begründen Sie die obere Intervallgrenze.

3 P

B 1.3 Das Dreieck BDP₂ ist gleichseitig.

Ermitteln Sie rechnerisch die Länge der Strecke [AP₂].

[Teilergebnis:
$$\overline{TP_2} = 5,20 \text{ cm}$$
]

3 P

B 1.4 Zeigen Sie durch Rechnung, dass für die Länge der Strecken $[CP_n]$ in Abhängigkeit von ϕ gilt:

$$\overline{CP_n}(\phi) = \frac{8,14}{\sin(54,46^\circ + \phi)} \text{ cm}.$$

2 P

B 1.5 Die Punkte P_n sind die Spitzen von Pyramiden $ABCDP_n$ mit den Höhen $[P_nK_n]$, deren Fußpunkte K_n auf der Strecke [AT] liegen.

Zeichnen Sie die Pyramide $ABCDP_1$ und ihre Höhe $[P_1K_1]$ in das Schrägbild zu 1.1 ein und ermitteln Sie sodann rechnerisch das Volumen V der Pyramiden $ABCDP_n$ in Abhängigkeit von ϕ .

[Ergebnis:
$$V(\varphi) = \frac{81, 4 \cdot \sin \varphi}{\sin(54, 46^\circ + \varphi)} \text{ cm}^3$$
]

3 P

B 1.6 Das Volumen der Pyramide ABCDP₃ beträgt ein Viertel des Volumens des Prismas ABCDEFGH.

Berechnen Sie das zugehörige Winkelmaß φ.

3 P

Prüfungsdauer: 150 Minuten

Abschlussprüfung 2011 an den Realschulen in Bayern

Mathematik I

A	ufgabe B 2		Haupttermin	
B 2.0	Gegeben ist	die Funktion f_1 mit der Gleichung $y = 1, 5^{x+2} - 4$ mit $G = IF$	$R \times IR$.	
B 2.1		ie Definitionsmenge und die Wertemenge der Funktion f_1 a Graphen zu f_1 für $x \in [-7; 2]$ in ein Koordinatensystem.	n und zeich-	
	Für die Zeich	hnung: Längeneinheit 1 cm; $-8 \le x \le 4$; $-6 \le y \le 4$.		2 P
B 2.2	Affinitätsach	der Funktion f_1 wird durch orthogonale Affinität mit der use und dem Affinitätsmaßstab k ($k \in \mathbb{R} \setminus \{0\}$) sowie auchiebung mit dem Vektor $\overrightarrow{v} = \begin{pmatrix} 2 \\ -13 \end{pmatrix}$ auf den Graphen der	nschließende	
	Zeichnen Sie	chung $y = -6 \cdot 1,5^{x-1} + 3$ abgebildet ($\mathbb{G} = \mathbb{R} \times \mathbb{R}$). e den Graphen zu f_2 in das Koordinatensystem zu 2.1 ein uechnung den Affinitätsmaßstab k.	and ermitteln	5 P
B 2.3	auf dem Gra mit Punkten liegen auf de zisse x der P Zeichnen Si	phen zu f_1 haben dieselbe Abszisse x und sind für $x < 0, 2$. C_n und D_n die Eckpunkte von Trapezen $A_nB_nC_nD_n$. Diem Graphen zu f_2 . Ihre x-Koordinate ist stets um 2 größer unkte A_n . Es gilt: $A_nB_n \parallel D_nC_n$ und $\overline{D_nC_n} = 3$ LE. e das Trapez $A_1B_1C_1D_1$ für $x = -7$ und das Trapez A das Koordinatensystem zu 2.1 ein.	8 zusammen e Punkte D _n als die Abs-	2.0
B 2.4	Zeigen Sie d Abhängigkei	durch Rechnung, dass für den Flächeninhalt A der Trapeze it von der Abszisse x der Punkte A _n gilt: 25·1,5 ^x +10) FE.	$A_nB_nC_nD_n$ in	2 P
B 2.5	-	A ₃ B ₃ C ₃ D ₃ hat den Flächeninhalt 8 FE. Sie die x-Koordinate des Punktes D ₃ . Runden Sie auf zwei a.	Stellen nach	2 P
B 2.6	Zeichnen Sie Überprüfen	kt A_4 des Trapezes $A_4B_4C_4D_4$ hat die x-Koordinate $-3,5$. e das Trapez $A_4B_4C_4D_4$ in das Koordinatensystem zu 2.1 ei Sie sodann rechnerisch, ob das Trapez $A_4B_4C_4D_4$ gleichs auf zwei Stellen nach dem Komma.		4 P