Besondere Prüfung 2008 – Mathematik

11. September 2008

Arbeitszeit: 120 Minuten

Seite 1 von 3

Die Angabe ist vom Prüfling mit dem Namen zu versehen und mit abzugeben.

Name:										

BE

2

1

1

5

2

2

1. Führen Sie die Polynomdivision $(x^3 + x + 10):(x + 2)$ durch und bestimmen Sie die Lösungsmenge der Gleichung $x^3 + x + 10 = 0$.

3 | 2. Vereinfachen Sie den folgenden Term so weit wie möglich $(b \neq 0)$:

$$\frac{(3a)^5}{4b^2} \cdot (3^2)^{-2} : \frac{1}{(-2b)^2}$$

3. Gegeben ist der Term $(a^3)^2 - (-a^2)^3$.

a) Vereinfachen Sie den Term so weit wie möglich.

b) Wie ändert sich der Wert des Terms, wenn a verdoppelt wird?

c) Ergänzen Sie im ursprünglichen Term einmal Klammern so, dass sich für beliebiges a der Termwert 0 ergibt.

4. Bestimmen Sie die Definitions- und Lösungsmenge der folgenden Gleichung: $\log_{10}(3x+11)-\log_{10}(x-1)=1$

5. Vereinfachen Sie die folgenden Terme so weit wie möglich:

a) $\sin(90^{\circ} - \alpha) \cdot \tan \alpha$ $(0^{\circ} < \alpha < 90^{\circ})$

b) $(\cos \alpha + 1) \cdot (\cos \alpha - 1) + (\sin \alpha)^2$

(Fortsetzung nächste Seite)

Besondere Prüfung 2008 – Mathematik

11. September 2008

Seite 2 von 3

BE

3

7

2

5

3

2

6. Die Tabelle zeigt den Holzbestand eines Forstwalds jeweils zu Beginn der Jahre 1997 und 2007. Der Holzbestand nimmt näherungsweise exponentiell zu und lässt sich daher gemäß der Formel $y = y_0 \cdot (1 + p)^t$ berechnen. Dabei bezeichnet y_0 den Holzbestand zu Beginn des Jahres 1997 in y_0 den Bestand nach t Jahren und y_0 die jährliche Wachstumsrate.

Beginn des Jahres	1997	2007
Holzbestand in m ³	7000	9900

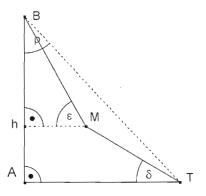
a) Berechnen Sie die jährliche Wachstumsrate p. [Ergebnis: $p \approx 3.5 \%$]

b) Berechnen Sie die Zeitspanne, in der sich der Holzbestand ab 1997 verdreifachen würde.

c) Es sollen 4000 m³ Holz zu Beginn des Jahres 2010 gefällt werden. Berechnen Sie, wie groß der Holzbestand unmittelbar nach dem Fällen sein wird. Ermitteln Sie, in welchem Jahr der Wald danach wieder einen Holzbestand wie zu Beginn des Jahres 2007 hat.

d) Geben Sie zwei Gründe an, warum die Verwendung der Formel für sehr große t, d. h. für sehr lange Zeitspannen, im genannten Anwendungszusammenhang nicht sinnvoll ist.

7. Von der Talstation T aus soll eine Gondelbahn zur Bergstation B gebaut werden (vgl. nebenstehende, nicht maßstabsgetreue Skizze).
Eine Vermessung vor Ort ergibt δ = 20°, ε = 35° und ρ = 〈ABT = 60° sowie TM = 1,2 km.



a) Berechnen Sie nachvollziehbar die Innenwinkel im Dreieck TBM.

[Teilergebnisse: ⟨BTM = 10°, ⟨MBT = 5°]

b) Berechnen Sie die Länge \overline{TB} . [Ergebnis: $\overline{TB} \approx 3.6 \text{ km}$]

c) Berechnen Sie den Höhenunterschied h zwischen Tal- und Bergstation.

(Fortsetzung nächste Seite)

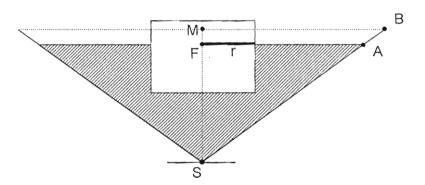
Besondere Prüfung 2008 – Mathematik

11. September 2008

Seite 3 von 3

BE

8. Das Innere einer Schale hat die Form eines auf der Spitze S stehenden geraden Kreiskegels mit Höhe 6,5 cm, d. h. $\overline{SM} = 6,5$ cm. Die Schale ist bis knapp unter den Rand mit Wasser gefüllt, darin schwimmt eine Kerze (vgl. folgende, nicht maßstabsgetreue Skizze des Querschnitts). Die Wasseroberfläche hat den Radius $R = \overline{FA} = 9,0$ cm und befindet sich 6,0 cm über der Spitze S, also $\overline{FS} = 6,0$ cm. Die zylindrische Kerze hat den Radius r = 3,0 cm, ihre Höhe beträgt h = 4,0 cm und ihre Eintauchtiefe ist 3,0 cm.



5

a) Berechnen Sie, welcher Bruchteil des gesamten Kerzenvolumens und welcher Bruchteil der gesamten Kerzenoberfläche sich unter Wasser befinden. (Ergebnisse in Prozent)

4

b) Berechnen Sie das Volumen des Wassers, das die Kerze umgibt.

[Ergebnis: ca. 424 cm³]

5.

c) Nun wird die Kerze behutsam so weit in das Wasser gedrückt, dass sie sich gerade vollständig unter Wasser befindet. Entscheiden Sie, ob deshalb das Wasser aus der Schale überläuft. Begründen Sie Ihre Antwort durch Rechnung.

60